Learning a Nonlinear Embedding by Preserving Class Neighbourhood Structure
نویسندگان
چکیده
We show how to pretrain and fine-tune a multilayer neural network to learn a nonlinear transformation from the input space to a lowdimensional feature space in which K-nearest neighbour classification performs well. We also show how the non-linear transformation can be improved using unlabeled data. Our method achieves a much lower error rate than Support Vector Machines or standard backpropagation on a widely used version of the MNIST handwritten digit recognition task. If some of the dimensions of the low-dimensional feature space are not used for nearest neighbor classification, our method uses these dimensions to explicitly represent transformations of the digits that do not affect their identity.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملSelection of the Number of Neighbours of Each Data Point for the Locally Linear Embedding Algorithm
This paper deals with a method, called locally linear embedding. It is a nonlinear dimensionality reduction technique that computes low-dimensional, neighbourhood preserving embeddings of high dimensional data and attempts to discover nonlinear structure in high dimensional data. The implementation of the algorithm is fairly straightforward, as the algorithm has only two control parameters: the...
متن کاملSelecting a Regularisation Parameter in the Locally Linear Embedding Algorithm
Abstract: This paper deals with a method, called locally linear embedding. It is a nonlinear dimensionality reduction technique that computes low-dimensional, neighbourhood preserving embeddings of highdimensional data and attempts to discover nonlinear structure in high-dimensional data. The implementation of the algorithm is fairly straightforward, because the algorithm has only two control p...
متن کاملLocal Graph Embedding Based on Maximum Margin Criterion (LGE/MMC) for Face Recognition
Locally linear embedding (LLE) is an efficient dimensional reduction algorithm for nonlinear data, and the low dimensional data can maintain topological relations in the original space after the processing. But this algorithm main application is not very good in the data dimensional reduction, the visualization and learning effects of data classification question and so on. In ordered to solve ...
متن کاملBayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM)
We introduce the Locally Linear Latent Variable Model (LL-LVM), a probabilistic model for non-linear manifold discovery that describes a joint distribution over observations, their manifold coordinates and locally linear maps conditioned on a set of neighbourhood relationships. The model allows straightforward variational optimisation of the posterior distribution on coordinates and locally lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007